
java.sun.com/javaone/sf

| 2004 JavaOneSM Conference | Session BOF-10091

JavaTM Metadata
(JSR 175) and the
Semantic Web

Joshua Fox
Senior Software Architect
Unicorn Solutions, Inc.
joshua.fox@unicorn.com
http://www.unicorn.com

| 2004 JavaOneSM Conference | Session BOF-1009 2

Adding Semantics to Java
Java and the next generation World Wide Web

Exposing the semantics of Java classes,
interfaces, and methods, for automated
integration

| 2004 JavaOneSM Conference | Session BOF-1009 3

Agenda With Section Highlights

• Java Metadata
• The Semantic Web
• Ontology
• Model-Driven Architecture
• The Power of Semantics

| 2004 JavaOneSM Conference | Session BOF-1009 4

Connect code to the world
Give business meaning to Java classes
Example from Industry
• Integrate a modern application with a partner's

mainframe application
─ One side is an insurance carriers which talks

insurance concepts like ACORD
─ The other is a benefits company which talks HR

language such as HR-XML

| 2004 JavaOneSM Conference | Session BOF-1009 5

Java Metadata

• JSR 175
• Tiger/JDK 1.5
• Can be retained in bytecode
• On the metadata level

Adding attributes to Java code

| 2004 JavaOneSM Conference | Session BOF-1009 6

Java Metadata: Sample Uses

Additional information on code
Example uses
• Expose a method as Web Service
• Indicate copyright information on code
• Mark methods as JavaBean-style properties
• Declare serializable fields
• Set permission categories on classes/methods
and
• Declare the meaning of the code

| 2004 JavaOneSM Conference | Session BOF-1009 7

Example

public class IgnoreTestCase extends TestCase{

@Ignore(reason="why not")

public void testCase() {

fail("");

}

public void testNotIgnored() {

//…

}

}
Thanks to Jeff Langr of Langrsoft

| 2004 JavaOneSM Conference | Session BOF-1009 8

The Semantic Web
Web Interfaces Have Real-Life Meaning

• Connect Web Services so that they can be
found, aggregated and used without prior
knowledge of interfaces/schemas

• Software can interact based on real-life
business concepts.

| 2004 JavaOneSM Conference | Session BOF-1009 9

Ontology

• Express the real world in classes, properties,
and business rules

• Deceptive similarity to OO: ontological models
represent the world, OO models represent
software (more later)

Formalization of Real-World Meaning

| 2004 JavaOneSM Conference | Session BOF-1009 10

Ontology: Standards
From the World Wide Web Consortium

• W3C: The organization of Tim Berners-Lee,
WWW inventor and Semantic Web visionary

• OWL
• RDF and RDF/S

| 2004 JavaOneSM Conference | Session BOF-1009 11

Ontology: Example

Account

CheckingAccount SavingsAccount

Retail
Customer

Bank
Branch

* 1**

The real-world concepts of banking

| 2004 JavaOneSM Conference | Session BOF-1009 12

Ontology: Classes

• (Multiple) Inheritance supported
• Comparable to Java classes, but

─Describe real-world objects, not software
objects

─Are not “factories” for the objects they
describe

─No behavior: no “methods” or “executables”
• Capture views of the business at different

levels of granularity
• Each usable without the other

A classification of real-world instances

| 2004 JavaOneSM Conference | Session BOF-1009 13

Ontology: Packages

• Similar to Java packages, but
hierarchical

• Packages should reflect practical
categories of real-life meaning

Grouping sets of classes

| 2004 JavaOneSM Conference | Session BOF-1009 14

Ontology: Properties
Characteristics of a class’ instances

• Relationships between classes (including
primitive classes)

• Resemble Java properties/fields, UML
associations

• The “has a” relationship
• Inheritance supported

| 2004 JavaOneSM Conference | Session BOF-1009 15

Ontology: Business Rules
Interrelate classes or properties

• Examples:
─ grossPrice = netPrice+ netPrice* taxRate
─ Value of currency is one of {“USD,” “EUR,” …

,”GBP”}
─ accountNumber is unique for each bank account

• Expressions, assertions about reality, rather
than (as in Java) executable behavior

• An extension of the ontological standards

| 2004 JavaOneSM Conference | Session BOF-1009 16

High Level Architecture

Java, Web Services, RDB Schemas, XSD, COBOL Copybooks, etc.

Semantic Mapping

Ontological Model

Semantic
Web

Extract,
Transform,

Load

Enterprise
Application
Integration

Federated
Query

| 2004 JavaOneSM Conference | Session BOF-1009 17

Model Driven Architecture

• The model represents the real world
• Java code represents executable behavior, a

simulation of the real world
• Java attributes (metadata) link between the two

layers

An ontological approach to MDA

| 2004 JavaOneSM Conference | Session BOF-1009 18

The Power of Semantics

• Java class Account linked to a clear definition
of what a “Retail banking account” really is

• Java field/property balance of class Account
linked to a definition: e.g., “current balance not
including interest year-to-date”.

• These definitions written in plain English
notation in the context of an ontological
formalism

Give code real-world meaning

| 2004 JavaOneSM Conference | Session BOF-1009 19

Using Semantics
Access code by its real-world meaning
Automated system can
• Find relevant classes/methods

─ in an API loaded in a jar
─ in Java code exposed as Web Services

• Transform when APIs do not provide the exact
desired real-world meaning
─ E.g., property price is available in JavaBean

RetailItem.
─ However, the mapping to the model indicates that

this is “net price,” while “gross price” is needed.
─ The model has a rule grossPrice = netPrice +net *

taxRate, and the system can generate the Java
code to make the conversion automatically.

| 2004 JavaOneSM Conference | Session BOF-1009 20

An Annotated Class
Linking Java code to its meaning

@OntologicalClass(url=“http://ecommerce.org/
model/RetailBankingAccount”)

@MappingRule(“owner.type!=CORPORATE”)

public class Account {

@OntologicalProperty(url=“http://ecommerce.org/
model/RetailBankingAccount/owner”)

public Customer getOwner(){
return owner;

}
}

| 2004 JavaOneSM Conference | Session BOF-1009 21

Mapping Java to ontology
Implemented with metadata attributes

Java
Java

Account
owner RetailAccount

owner

Ontology

[make

| 2004 JavaOneSM Conference | Session BOF-1009 22

Declarations of Ontological Attributes

Defining the metadata
@Retention (RetentionPolicy.RUNTIME)
@Target({ElementType.CLASS})
@interface OntologicalClass{
String name();
String url();

}

@Retention (RetentionPolicy.RUNTIME)
@Target({ElementType.FIELD})
@interface OntologicalProperty{
String name();
String url();

}
@Retention (RetentionPolicy.RUNTIME)
@Target({ElementType.CLASS})
@interface MappingRule{
String value();

}

| 2004 JavaOneSM Conference | Session BOF-1009 23

Ontological Attributes
Identifiers for ontological concepts
• URL is standard adopted by W3C as globally

unique identifier for various purposes, e.g.,
XML namespaces. Semi-human-readable

• Name is human-readable identifier; needs to
be a fully qualified name with packages, similar
to Java packages, for uniqueness

• Another approach uses a Unique ID for
ontological concepts, a long pseudo-random
number or String, not human readable, but
compact and guaranteed unique

| 2004 JavaOneSM Conference | Session BOF-1009 24

Isn’t a Naming Convention Enough?

No!
• The JavaBean setXYZ/getXYZ doesn’t tell you what

XYZ means
• JSR 175 was developed to replace name-based

conventions
• Map to ontological model to give meaning
• Ontological models built differently from java

codebases
• Ontological model may be fixed standard
• There’s only so much you can pack into a string
• Get the power of classes, inheritance, properties, rules

| 2004 JavaOneSM Conference | Session XXXX 25

Joshua Fox
Unicorn Solutions, Inc.

joshua.fox@unicorn.com

www.unicorn.com
25

java.sun.com/javaone/sf

| 2004 JavaOneSM Conference | Session BOF-100926

JavaTM Metadata
(JSR 175) and the
Semantic Web

Joshua Fox
Senior Software Architect
Unicorn Solutions, Inc.
joshua.fox@unicorn.com
www.unicorn.com

