
1

The Portal
as People-Centric SOA

Unifying the Enterprise across Java and .NET

May 2007

Contents

Executive Summary 2

The Portal as People-Centric SOA 2

Composite Applications and Workflows: Visible SOA 3

Portal Requirements 4

Introducing Mainsoft for Java EE, Portal Edition 5

Mainsoft’s Portal Edition: Enabling Front-End SOA 7

Federation Versus Integration: WSRP and Cross-Compilation 8

Multi-Language Java EE Platform 8

Technical Integrations: Don’t Do Them with SOAP 9

People-Centric SOA: Unifying Services, People, and Platforms 9

References 10

22

Executive Summary

Increasingly, companies are turning to Java™ Enterprise Edition (Java
EE) portals as the foundational starting point for their Service Oriented
Architecture (SOA). With composite applications and workflows giving end
users a single personalized view into the enterprise, portals offer an ideal
platform for the most tangible and practical integrations.

However, not all integrations are created equal. An asymmetrical
architecture using Web Services for Remote Portlets (WSRP) produces an
asymmetrical environment in which composite application development is
restricted to the Java components running locally on the Java EE portal, and
functionalities such as single sign-on and universal branding are difficult to
achieve. In addition, enterprises which choose a Java EE portal have limited
opportunities to reuse their .NET skills and code.

When implemented as part of a Java EE portal environment, Mainsoft® for
Java™ EE, Portal Edition protects enterprise investments in .NET and Java
skills and code. Together with portal standards such as WSRP and JSR 168/
286, the Java Portlet Specifications, Mainsoft’s enterprise-class .NET-Java
EE interoperability software provides a direct path to a visible SOA and to a
stable long-term SOA strategy.

Mainsoft’s cross-compilation software enables .NET developers to produce
standards-compliant Java portlets that run locally on Java EE portals,
enabling .NET and Java developers to contribute equally to a visible SOA
infrastructure. Composite applications can be created using .NET and Java
cooperative portlets. Regardless of whether services are written in C#,
Visual Basic®, or Java, a Java EE portal built with Mainsoft’s Portal Edition
delivers a rich and well-integrated end-user environment, with equal access
to the Java EE infrastructural services provided by the portal, such as role-
based personalized interfaces, single sign-on, unified navigation, inter-
portlet communications, and other portal services.

The Portal as People-Centric SOA

Managers want access to all their enterprise functionality as a seamless
whole, and Service Oriented Architecture has emerged as the way to achieve
this. SOA means business-oriented integration; in other words, SOA is built
on coarse-grained, relatively large messages, which represent commonly-
understood business concepts, as for example Purchase Order or Employee.
Services do not need to be aware of each others’ implementations or
internal interfaces, and so avoid the limitations of proprietary, fine-grained,
technically-oriented legacy APIs.

33

True SOA is difficult to achieve, and one of the hardest steps is defining
services along meaningful business lines. Each service should consist of
discrete functionality that provides true value, such as revenue reporting,
shipping control, or human resources management. Yet there is intense
pressure for technical constraints to define the services, creating service
boundaries around technologies such as Java and .NET. Likewise,
political struggles often mean that application borders are drawn around
organizational units, as different departments work to control their own
applications. This makes it difficult to bundle useful services out of pieces of
the various applications.

But the users care only about their business needs, and they demand
full access to enterprise applications, regardless of the implementation
technology: Java, .NET, or any other.

An enterprise portal, such as IBM WebSphere® Portal, can answer the need
for practical, user-centric SOA. It presents a Web application composed of
portlets. Each portlet displays a well-defined unit of business functionality
and shares information with other portlets as needed, showing relationships
in the data and channeling users through a business process.

Focusing on tangible, useful applications makes it easy to define the services
according the needs of the business. Starting with legacy application
interfaces, developers “portalize” a functionality using the portal’s graphical
toolkit, shaping the user interface for each service. This provides a valuable
learning tool for users and executive sponsors: first, on the specific services
provided by the enterprise, and second, on the broader concept of correct
business service definitions. On the technical side, it sets the stage for later
integration of services at the business logic tier.

Composite Applications and Workflows: Visible SOA

As portals mature, the integration of their services deepens, moving
from simple juxtaposition of applications to composite applications to full
business-process workflow.

The most basic portals simply aggregate portlets into a consistent interface.
This gives the users the broad enterprise view that they demand, customized
for their business role, as well as the added value of consistent branding,
standard controls, user management, auditing, and persistence services. For
example, salespeople would see their sales reports alongside their quarterly
quotas, alongside a customer relationship management application; they
would also see the same benefit forms and corporate news that is displayed
to all employees.

44

In the next step on the maturity ladder, portals present new, fully integrated,
composite applications, in which portlets are wired together “on the glass”
through inter-portlet communications. Tools such as WebSphere Portal
Application Template allow business analysts to lay out and wire together
these overarching Web applications without coding, making it easy to build
simple organization-wide applications. For example, sales representatives
using a composite application could see their estimated sales commission
together with the compensation agreement and sales reports from which
it was calculated. Likewise, a business line manager could see integrated
reports on supply chain management, manufacturing, and shipping. These
reports are generated in the portal without recourse to expensive and hard-
to-use application integration tools.

Finally, the most mature portals present an entire human-driven workflow
across the enterprise. These applications guide users through a business
process, passing responsibilities around as needed, and obviating the need
for manual effort. For example, when on-boarding a new employee, different
roles such as human resources, IT, and the employee’s supervisor would
pass tasks smoothly between them in the workflow. They would no longer
need to copy data between applications, to remember the correct sequence
of applications to use, or to hand off responsibility to each other manually.

The tangibility and visibility of the portal enables a phased progression
towards deeper integration and workflow, since portal developers and
content managers can create workflows on the glass. Because portals will
soon also support Business Process Execution Language (BPEL), visual
integrations blaze a path for later adoption of sophisticated “behind-the-
glass” implementation of workflows at the business logic tier.

Portal Requirements

As the business user’s primary window into the enterprise, a complete
front-end SOA environment within a portal must support stringent
requirements.

1. It must deliver a seamless user experience. Visually, a portal must
combine consistency with flexibility. On the one hand, every portlet must
have cleanly integrated branding, layout, and rich user experience. On
the other hand, the portal must be flexible enough to show each user an
interface relevant to his or her role.

2. It must support both of the popular enterprise platforms: Java and
.NET. Many organizations use both .NET and Java development technologies,
because of corporate mergers or independent internal projects, and so a
portal must give end users complete, transparent access to all services and
user interfaces, regardless of the technology they were coded in.

55

3. Portal-based composite applications and workflows must operate
cleanly across both Java and .NET. One approach to supporting both
platforms is to run the ASP.NET applications on Microsoft’s® IIS and the Java
applications on a Java EE portal server in tandem, integrating them using
WSRP, so that ASP.NET applications can be visualized in the Java EE portal.
However, a remotely served portlet will always have poorer functionality than
one running directly on the server which presents it. This is especially true
with WSRP version 1, which does not support inter-portlet communications.
As a result, composite application development in Java EE portals such as
WebSphere Portal is limited to Java business components.

4. To be practical, the development process must preserve existing
investments in .NET and Java skills and code. The adoption of a
portal cannot require extensive re-training of developers or re-coding of
user interfaces and underlying services, regardless of their implementation
technology. Existing skills and code must continue to function. Rapid re-
use of existing applications helps portals avoid the common “Teflon portal”
syndrome, in which an enterprise launches its portal with a scattering of
isolated enterprise applications and a few irrelevant starter portlets such
as stock tickers or weather. Teflon portals often fail to “stick,” and so never
gain the budget needed to expose new functionality.

Introducing Mainsoft for Java EE, Portal Edition

Mainsoft’s Portal Edition provides a set of .NET extensions for Java EE Portals
and offers a pragmatic solution for a symmetric .NET/Java portal architecture.
Based on patent-pending technology developed over the last five years,
Mainsoft’s Portal Edition includes a seamless plug-in to the popular Visual
Studio® development environment, which enables .NET developers to write
.NET code in ordinary C# or Visual Basic using the usual ASP.NET controls
and .NET libraries, as well as Java EE portal services exposed through .NET
interfaces.

Architecture of Mainsoft’s Portal Edition

66

Mainsoft’s Portal Edition works by cross-compiling .NET Intermediate
Language into native Java bytecode, producing JSR 168 compliant Java
portlets that run the same as any other portlet running locally in the Java
EE server. It includes an ASP.NET runtime that enables .NET developers to
code against their familiar APIs:

• The Java EE portal’s look-and-feel is exposed as standard ASP.NET themes,
Java data sources as ADO.NET, and portal services such as People and
Location Awareness as drag-and-drop .NET controls.

• ASP.NET role-base security is transparently mapped to WebSphere Portal
Membership and Authentication providers.

• Java-standard APIs, such as the Portal User Management Architecture
(PUMA), are transparently accessed through interfaces of ASP.NET
providers.

• Access to widely used .NET enterprise services, such as SQL Reporting
Services, is available through C# portlets provided in source code form.

More broadly, NET developers can call on all Java library functionalities,
whether encoded as JSR168/286 APIs, portal infrastructure services APIs,
or generic Java class libraries. Such full functionality could also be achieved
by re-coding the .NET applications in Java. But the cost of this approach
can be prohibitive, both in manpower and in time-to-value. Mainsoft’s Portal
Edition, on the other hand, allows the migration to happen rapidly and
automatically at compile-time, without introducing the risks inherent in a
rewrite. Typically, only 0.5% of code needs to be altered, usually as a way
of adding extended Java functionalities that are not available in .NET.

With Mainsoft’s Portal Edition, .NET developers can continue working side-
by-side with Java developers indefinitely, both deploying code to the same
portal server. Even non-specialists can contribute to the people-centric
SOA of the portal: Business analysts can build composite applications
and workflows with inter-portlet communications between .NET and Java
components, using interactive tools such as WebSphere Portal Application
Template.

77

Composite Application delivered by IBM WebSphere Portal

Mainsoft’s Portal Edition: Enabling Front-End SOA

A sustainable, long-term portal strategy recognizes the need for coherence
in visible functionality. Each enterprise information system may maintain
its own user interface, but their unavoidable single point of contact is the
user, who must see clear, consistent composite applications and workflows.
An architecture based on a Java EE portal server, such as IBM WebSphere
Portal, and Mainsoft’s Portal Edition recognizes that even when heterogeneity
exists on the back-end, the user needs consistency and ease-of-use above
all.

By deploying .NET services locally on the Java EE server, Mainsoft’s Portal
Edition enables rich, consistent user interfaces, since all portlets can use the
common portal infrastructure for shared branding and look-and-feel. It also
supports the modern AJAX Web architecture, which allows Web interfaces
to respond quickly and interactively to user input. Web interfaces, known
as thin clients, no longer need be the poor cousins of fat-client desktop
applications. AJAX depends on frequent, narrowly-defined communication
between the browser and the server, and so cannot work when a portlet
is served remotely with WSRP; but with Mainsoft and the open-source
ASP.NET AJAX framework (Anthem.NET), a Java EE portal server can provide
the full richness of AJAX to portlets coded in .NET and in Java. Support for
Microsoft’s AJAX framework (Atlas) is scheduled for the first part of 2008.

88

Federation Versus Integration: WSRP and Cross-Compilation

Mainsoft’s cross-compilation capabilities complement the WSRP
standard, which is ideal for federating external services and portal-to-
portal interoperability. However, WSRP does not support inter-portlet
communications, leaving each portal as a functional silo. When composite
application development as well as a rich, end-user experience are
requirements, Mainsoft’s cross-compilation approach provides the requisite
rich integration, composing an organization’s applications through inter-
portlet communications.

Version 2 of WSRP, primarily centered on inter-portlet communications,
is scheduled to come out in late 2007, and it is expected to reach wide
deployment in 2009. Mainsoft will support WSRP version 2 to enable the
federation of remote .NET Web and portal applications. Even then, Mainsoft’s
cross-compilation will serve as an essential complement to WSRP version 2
by providing symmetric access to infrastructural services, and by enabling
technical integrations with the requisite fine-grained communications.

In the meantime, enterprises looking to federate SQL Reporting Services
within WebSphere Portal can use Mainsoft’s SQL Reporting Connector.

The Java Portlet Specification, JSR 168, defines a standard and open API into
Java EE portal servers, encouraging healthy competition between vendors.
Mainsoft’s Portal Edition implements this standard for .NET-coded portlets.
It also provides inter-portlet communications, which are not supported
by JSR 168. Mainsoft will also enable cross-compilation and execution of
.NET code on JSR 286 containers. JSR 286 will add support for standard
inter-portlet communications, caching, and direct access to the underlying
request and response.

With support for Web services standards and cross-compilation capabilities,
Mainsoft supports the full range of .NET-Java EE interoperability technologies
for Web applications: the federation of .NET remote assets into Java EE
portals and tight integration of .NET-Java applications on JSR-compliant
containers.

Multi-Language Java EE Platform

Mainsoft’s cross-compilation software establishes C# and Visual Basic as
fully supported languages for the Java Virtual Machine (JVM). In fact, running
non-Java languages on the JVM is a major priority of Sun Microsystems and
the Java community. Java 6 added support for plugging in multiple scripting

99

languages (with the JSR 233 standard), already including Python, Ruby,
Visual Basic, JavaScript, and others. The upcoming Java 7 is scheduled to
have even deeper support for non-Java languages (JSR 292).

Thus, the JVM becomes a true abstraction layer, in keeping with an ongoing
industry trend towards virtualization and open systems. The virtual machine
is no longer locked to one language. Instead, the IT organization is free to
de-couple development decisions from production decisions and use Visual
Studio for development and a Java EE portal server for deployment.

Because Mainsoft generates native Java bytecode, it creates portals that
behave in every way like those composed of ordinary Java-language portlets.
Benchmarks show that these .NET/Java portals have a zero performance
hit compared to all-Java or all-.NET portals. Indeed, by taking advantage
of Java EE high performance and scalability, they can even outdo the
original .NET application performance. This is in contrast to multi-portal
approaches, using WSRP for integration, in which performance is reduced
by network activity and by rendering HTML to and from SOAP/XML. See
the full Performance Study online (http://www.mainsoft.com/solutions/
pdfs/PerformanceStudy.pdf).

The pure-Java-bytecode runtime also allows developers to debug uniformly
across the whole application. They work with a single, consistent system,
regardless of the language of the source code.

Technical Integrations: Don’t Do Them with SOAP

Newcomers to SOA often think of it as a new version of older remoting
technologies such as RMI, DCOM, or CORBA: a way to call a function from
one application or machine to another. But Web services, though ideal for
integration of business services, are not well suited for integration at a
technical level.

Loosely coupled business service integration, which is at the heart of SOA,
passes only coarse-grained, business-oriented messages. Though this is
perfect for portlets, technical services such as themes, styles, and user
management, or the composition of business services from low-level API
calls need to be tightly coupled and fine-grained, with relatively smaller
units of data passed into object-oriented methods. These require speed
and precisely-specified interfaces, but XML Web services are too slow and
loosely defined; binary, low-level technologies are well suited to these goals.
Technical integrations are best implemented as direct method calls within
the JVM. Mainsoft makes these direct invocations possible.

http://www.mainsoft.com/solutions/pdfs/PerformanceStudy.pdf
http://www.mainsoft.com/solutions/pdfs/PerformanceStudy.pdf
http://www.mainsoft.com/solutions/pdfs/PerformanceStudy.pdf
http://www.mainsoft.com/solutions/pdfs/PerformanceStudy.pdf

10

People-Centric SOA: Unifying Services, People, and Platforms

The portal gives enterprises a long-term basis for people-centric SOA,
starting with aggregated service-oriented user interfaces, and ramping
up to composite applications and full on-the-glass workflows. But a portal
can only fulfill the SOA promise when all enterprise services are equally
accessed through the enterprise portal, regardless of whether they are
written in Java or in .NET, and when all developers can continue to apply
their existing skills and code. Mainsoft for Java EE, Portal Edition, creates
a symmetric, standards-based architecture in which portlets in multiple
software languages can be composed into coherent composite and workflow
applications.

References

 IBM White Paper: “WebSphere Portal: An on-ramp to a service
oriented architecture” (http://www-07.ibm.com/sg/soa/downloads/
WebSphere_Portal.pdf).

 Gartner Research: “A portal may be your first step to leverage
SOA” (http://www.gartner.com/DisplayDocument?doc_cd=130149).

 Forrester Research: “Choosing the best option for .NET-Java/J2EE
interoperability” (http://www.mainsoft.com/solutions/pdfs/Forrester_
Tech Choices.pdf).

 Laurence Moroney: “Jumpstart SOA: Pragmatic approaches to
integrating .NET and Java components within WebSphere
Portal,” Java Developer’s Journal, Nov. 2006 (http://www.mainsoft.
com/news/articles/JDJ_JumpstartSOA_Nov2006.pdf).

 Resources for Mainsoft for Java EE, Portal Edition, can be found on
the http://www.mainsoft.com and http://dev.mainsoft.com/
Web sites, including success stories, technical specifications, samples
applications, and detailed tutorials.

All trademarks, trade names, service marks, and logos referenced herein belong to their
respective companies.

http://www-07.ibm.com/sg/soa/downloads/WebSphere_Portal.pdf
http://www-07.ibm.com/sg/soa/downloads/WebSphere_Portal.pdf
http://www-07.ibm.com/sg/soa/downloads/WebSphere_Portal.pdf
http://www.gartner.com/DisplayDocument?doc_cd=130149
http://www.gartner.com/DisplayDocument?doc_cd=130149
http://www.mainsoft.com/solutions/pdfs/Forrester_Tech Choices.pdf
http://www.mainsoft.com/solutions/pdfs/Forrester_Tech Choices.pdf
http://www.mainsoft.com/solutions/pdfs/Forrester_Tech Choices.pdf
http://www.mainsoft.com/news/articles/JDJ_JumpstartSOA_Nov2006.pdf
http://www.mainsoft.com/news/articles/JDJ_JumpstartSOA_Nov2006.pdf
http://www.mainsoft.com/news/articles/JDJ_JumpstartSOA_Nov2006.pdf
http://www.mainsoft.com/news/articles/JDJ_JumpstartSOA_Nov2006.pdf
http://www.mainsoft.com/
http://dev.mainsoft.com/

	Executive Summary
	The Portal to People-Centric SOA
	Composite Applications and Workflows: Visible SOA
	Portal Requirements
	Introducing Mainsoft for Java EE, Portal Edition
	Mainsoft’s Portal Edition: Enabling Front-End SOA
	Support for WSRP and JSR Standards
	Multi-Language Java EE Platform
	Technical Integrations: Don’t Do Them with SOAP
	People-Centric SOA: Unifying Services, People, and Platforms
	References

