
56 volume1 issue5

X ML is often used to transmit messages. The tags indicate

where the message should go and how it should be handled. The informa-

tion transferred in the message can be XML as well.

Just as modularity is necessary in coding programs, separating the
messaging envelope from the data body is necessary in planning data
structures. Keeping the layers from recognizing each other allows devel-
opers to work separately, and to change implementations when neces-
sary. Allowing the layers to interact too much is a common mistake,
which leads to complicated and inflexible code.

In this article I’ll show you how to build an effective XML-based lay-
ered message architecture. 

Header/Body Design Pattern
The “Header/Body” design pattern is the most effective way to place

a document into a message envelope without creating undue depen-
dencies between data and messages. The “envelope” is the structure of
the message, and includes body and header. The “body,” also known as
the “payload,” is the information to be sent, recognized by the higher
level of abstraction in the code, while the “header” is additional infor-
mation added by the lower envelope level for its own purposes, such as
routing. It’s essential that these layers be independent. 

Opaqueness and transparency are two sides of the same coin.
Opaqueness means that the lower layer envelope knows little or nothing
about the body. Transparency means that the higher-layer body knows
nothing about the lower layer over which it is sent. The transparent lower
layer might be sent over an even lower layer, and then the same princi-
ple arises: the transmitted data should be opaque. The benefits of
opaqueness and transparency are complementary: opaqueness allows
you to switch body formats at will, while transparency allows you to
switch message formats. Where opaqueness and transparency aren’t pre-
served, the layers become dependent on each other, and change
becomes difficult.

The Header/Body design pattern is a data-structure pattern, appro-
priate for XML. As such, it differs conceptually from the better known
behavioral patterns,  which are appropriate for object-oriented languages
such as C++, Java or Smalltalk. Yet data-structure and behavioral patterns
do have a lot in common. The Header/Body data-structure pattern shares
a “Layers” pattern language with behavioral patterns such as Bridge,
Adapter and Façade as these keep levels of abstraction separate and min-
imize mutual dependencies. In real life the data-structure and behavioral
patterns are closely related: when data structures are carefully encapsu-
lated in the appropriate layers, the processing code can be encapsulated
as well. And since violation of layer encapsulation is as much a problem
in data structures as in object behavior, I’ll explain in this article the chal-
lenges involved in designing the layers and in keeping them separate.

Layered Architecture
To understand the Header/Body pattern, we divide the participants

along two axes: sender and recipient, higher and lower layers (see Figure
1). The sender on the higher layer wishes to send a message in a given
XML schema. It packs this body in an envelope by adding the header,

[ WRITTEN BY JOSHUA FOX ]

OPAQUE
BODIES,
TRANSPARENT
ENVELOPES



57volume1 issue5

perhaps using an auxiliary packer class. The higher-layer sender then
passes the envelope, with body packed inside, to the lower-layer sender,
which transmits it over the communications protocol (itself an even
lower layer). The lower-layer recipient receives the message, unpacks the
body, perhaps using an auxiliary unpacker class, and then passes the
body to the upper layer in a callback function (see Figure 2).

In actual systems protocols are stacked many layers high, and the
message is itself the body of a lower-layer envelope. XML is layered on
top of non-XML layers. For example, SOAP (Simple Object Access Proto-
col) defines XML headers and bodies in an XML envelope. SOAP is sent

Check out the
design benefit of

multilayered
Header/Body

structures

FIGURE 1 Structure of layered XML message

<Envelope>
<Header> ... message header ... </Header>
<Body> ... message body ... </Body>
</Envelope>

 Basic Structure for Layered Message   

Basic XML Layout for Layered Message
Header

Body
(Payload)

Envelope

FIGURE 2 Participants in layered message system

HigherLayerSender

peers

HigherLayerRecipient

LowerLayerRecipientLowerLayerSender

Unpacker

Body

Envelope

peers

Packer



58 w w w . X M L - J O U R N A L . c o mvolume1 issue5

over various lower-layer transports such as HTTP or asynchronous mes-
saging. Information on processing the method-call body is extracted
into the SOAP envelope. From there the namespace identifying the
method may actually appear one layer up, in a special SOAPAction HTTP
header, as this example, abridged from the SOAP proposal, shows. 

POST /StockQuote HTTP/1.1
. . .
SOAPAction: "some-URI"
. . . 
<SOAP-ENV:Envelope . . >

<SOAP-ENV:Body>
<m:GetLastTradePriceDetailed xmlns:m="some-URI" >

. . . 

If HTTP-parsing software such as a CGI had to access the SOAP head-
ers or even the body directly, HTTP and XML instructions would be
hopelessly mixed.

Layers in Enterprise Software
The complexity of typical distributed software makes it imperative to

separate layers. Taking as an example a typical enterprise system (see
Figure 3), a servlet receives a POST from an online form, then creates an
XML purchase order using an industry-standard schema. The servlet
passes the XML to an EJB, which decides on the message’s destination. A
Java Message Service queuing system, also used by other applications
like payroll and billing, has a standard XML schema generally designed
for routing messages in the enterprise. The EJB wraps the purchase-
order-schema XML in the messaging-schema XML, attaching destina-
tion information, then passes the XML to software that reads the mes-
saging XML and interprets it for routing through the JMS system to the
order fulfillment server. Here an order fulfillment application uses an
EJB, which applies the fulfillment business logic and accesses data in a
database using the database’s propriety XML-to-RDBMS system.

Various data formats are used: two XML schemas, along with non-
XML formats like forms, Java remote method calls, JMS messages and a
relational database. 

To control this complexity, we must isolate the applications and their
data formats from each other. For example, if we switch databases, we’ll
need a different XML-to-RDBMS layer, and if we switch from JMS to
CORBA, we need to rewrite the XML-to-messaging code. 

The separation of layers doesn’t prevent all coupling. There must be
coupling between peer components. Senders and recipients on the
same level of abstraction must understand the same schema. The iden-
tification of the schema or DTD in the document itself can provide a
degree of flexibility in parsing, but to process the document meaning-
fully, the software on each side must have similar abilities. This means
that peers on a given layer are tightly coupled. 

Transformation vs Packaging
Packaging bodies in messages is a way of passing data of one schema

to software that requires a different schema. Transforming a schema, as
with XSLT, is another. Packaging and transformation have different pur-
poses. Packaging is used for passing data between layers of abstraction,
where each layer has a clearly defined functionality that must be pre-
served. Transformation, on the other hand, is used for passing data
between participants at the same layer of abstraction, where the function-
ality of one ceases and the other begins. With transformation, information
loss is permissible since the full functionality of the transformed schema
is no longer needed. For example, an XML weather report contains appli-
cation-specific tags allowing software to understand it, but when the XML
is transmitted over WAP to a cell phone display, it’s transformed into WML
by XSLT; now all that matters is that the result be human-readable on the
cell phone, and machine-readable semantics can be erased. 

Interlayer Communication
When the lower layer envelope needs information about the higher

layer body, but the body must be kept opaque from the moment of
transmission, you can apply the Header/Body pattern. 

In XML the Header/Body pattern is implemented with a schema that
assigns elements for the header and the body. SOAP provides a good illus-
tration of this format. The SOAP Message is an XML document with a root
Envelope element. This Envelope has zero or more header elements as its
first children, with one or more body elements as the headers’ siblings.

When the body is passed from the higher layer to the lower layer, it is
“packaged” into the envelope and the header is added. Data needed by
the lower layer is extracted from the body and placed in header fields;
other header fields may be added at this time. Only the class charged
with packing the data need know the formats of both body and message
header, as it’s essential that lower layers do not extract these body ele-
ments en route. Typical header data include:
• Routing information: The intended destination(s) of the message –

whether it should be routed through requested intermediate points.
This helps the lower layer send the data on its way without examining
the content of the body.

• Priority: How urgent the message is.
• Body type: Whether the body is, for example, a JPEG image, an MP3

sound file, a Java serialized object or XML. MIME types are common-
ly used for this purpose. Subtypes are possible: if the body is XML, the
schema URL and processing instructions could be included here.

• Pricing information: If the messaging layer includes a mechanism for
buying and selling data, how much the data in the body costs, and
where payment should be sent.

• Batching: Whether this message should be taken as part of a batch of
messages that have something in common.

• Transaction: Whether this message is part of a data-access transac-
tion, with the identifier for the transaction.

• Authentication: The source of this message, with a public-key authen-
tication header to prove it.

• Logging: Recording various fields to a log file.

Intermediary Applications Missing a Layer
You must be careful about layer violation when an intermediary in

transmission has to intervene on the higher level of abstraction. For
example, say that a user interface application builds a purchase-order
XML document from information taken from a GUI, then puts that doc-
ument as the payload of an XML messaging envelope and sends it to a
routing application. The routing app examines the message headers andFIGURE 3 Example of distributed enterprise software

DB

JDBC

EJB2

remove 
method call

fullfillment
server

browser

post

servlet

remove 
method call

EJB1

JM8

messaging
XML

purchase
order XML



59w w w . X M L - J O U R N A L . c o m volume1 issue5

decides where the message goes – in this case to the order fulfillment
application., which not only fulfills the order, but also builds XML to
report back its success to the user interface application. The UI then
converts this XML with XSLT to HTML, appropriate for the user inter-
face. In principle it seems that the routing application should know
nothing about how the UI and the order fulfillment app talk with each
other: the higher layer is missing in the routing app (see Figure 4).

But what if the routing app can’t figure out where to send the message,
or can’t contact the order fulfillment application? The routing app needs
to send XML back to the UI indicating failure, and this XML has to be in
the higher-layer format, appropriate for conversion into user-readable
information. A common mistake is to construct the user response within
the intermediate application, which means using code inappropriate for
this application. A more correct architecture defines a schema for report-
ing faults on the messaging layer back to the originating application,
where user-interface XML can be more appropriately constructed.

How to Implement
Ideally, with body-layer data in hand, you should be able to send it

over any envelope layer without change. Sometimes, though, the appli-
cation places constraints on the body, and then transparency is reduced
(see Table 1). In this section I’ll show some examples of why you might
want to impose transparency- or opaqueness-reducing constraints.

STRUCTURED BODY
If you specify the structure of the body, you can be sure to get infor-

mation from the body that may be necessary in processing it. For exam-
ple, the “body” in a SOAP header is application-specific. It isn’t an arbi-
trary XML document; rather, it must fit specifications for XML that are
appropriate for a method call, return value or fault report.

The example Packager/Unpackager, available online, shows the basic
outlines of how to work with XML-in-XML. It uses SAX and Java to pack-
age a body in an envelope, simultaneously extracting header informa-
tion from the body and inserting it into the appropriate place in the

envelope. The parser must in effect pass over the body twice: once to get
the whole body, and again to extract from the body fields that are appro-
priate for the envelope header. In this implementation both passes are
made at once, as two XML documents are simultaneously accumulated.
Processing instructions are removed from the body, as is the initial <?xml
…?> directive. This is necessary to keep processing instructions in the
body from being wrongly applied to the envelope layer. The parsing may
also remove comments. Note that the XML Infoset  specifications say it’s
legal to remove comments along the way in processing XML; this also
implies that you can’t use comments to “escape” things that could con-
fuse the envelope layer, such as processing instructions.

SCHEMA WITH A FEW CONSTRAINTS
The body may be required to have a simple schema, to assure that it

has basic information the header needs. For example, the body might be
required to note the destination of transmission so the appropriate
header can be populated (see Listings 1, 2 and 3 for MessageSchema.xml
, which has a Body with a TargetAddress element). 

SUBCLASS OF SCHEMA
You can keep the benefits of a body schema, yet gain more freedom

by extending the schema. In XML schema this is done with the base and
derivedBy attributes. For example, you may want to extend the Body ele-
ment to allow information to be sold over the messaging system. Just
add some pricing information to the information already given by the
base Body element.

<simpleType name="PricedBody" base="Body" derivedBy="extension">
<element type="Price"/><!--  defined eleswhere-->
</simpleType>

UNPARSEABLE DATA
If you want the data to be a completely opaque character string to the

envelope, you can wrap it in a CDATA section. Anything wrapped by <!
[CDATA[ and ]]> is ignored by XML parsers. This way, any XML parsers
on lower layers won’t waste time parsing and validating data. Complete
opaqueness requires that the lower layers completely ignore structures
in the higher layers. A validation error in the body shouldn’t interest
developers of the messaging system; that’s the responsibility of sender
and recipient on the higher layer. For example, if the lower layer doesn’t
have access to schemas from the upper layer, it can’t validate the XML
transmitted in message bodies. CDATA blocks have the additional
advantage of saving parsing time, since lower-level DOM message
parsers will automatically parse the body XML, even though the lower
layer can’t make use of the parsed information.

Another way to convert parseable XML into unparseable character data
is to “escape” the entities in the XML body. A call to the DOM method enve-
lope.createTextNode(body) (envelope is a Document and body is a String)
can achieve this effect. In the process all less-than signs (“<”) are convert-
ed to &lt; greater-than signs (“>”) are converted to &gt; ampersands (“&”)
are converted to &amp;. This produces a text node that isn’t parseable XML
but just a character data string as far as the parser is concerned.

A caveat: neither the CDATA nor the entity-conversion techniques can
be used recursively. If your message XML document has a CDATA section,
and you try to embed this message as the body of a message at an even
lower layer, then you have one CDATA section nested in another. The stan-
dard doesn’t permit this, and a parser will start a CDATA section at the first
<! [CDATA, ignore the nested <! [CDATA, then end the CDATA section at
the first interior closing symbol ]]>. This isn’t what you want (see Listing 4).

Likewise, if a message includes &lt; and &gt; entities converted from
“<” and “>” symbols in a body, and that message itself undergoes con-
version when packed in yet another message, then the &lt; and &gt; enti-
ties from the two conversions will be mixed up. When you try to resolve
the entities to less-than and greater-than signs, as part of the unpacking
process, there’s no way to know which entities underwent packing once
or twice, and so need unpacking once – to the intermediate message
layer – or twice – to the body layer.

FIGURE 4 Intermediate application lacking the higher level of abstraction

Higher layer
not
recognized in
routing app

Origin: Higher Layer

Origin: Messaging Layer

Routing: Messaging Layer

Destination: Messing Layer

Destination: Higher Layer

TABLE 1 Degree of  constraint on body

Body has a schema defined by lower layer
that poses extensive constraints on body 
content.

Body has a schema which imposes few 
constraints beyond the root element.

Body has a schema which is derived from a 
root schema that imposes few constraints.

Body is XML with no schema used.

Body is unparsed character data.

Body is unparsed binary data.

Degree of constraint Constraints Example Below

less

more SOAP

MessageSchema.xml 
with schema-validating parser

Schema PricedBody

MessageSchema.xml 
when schema is ignored

CDATA or "escaped" 
XML

Base64



60 w w w . X M L - J O U R N A L . c o mvolume1 issue5

ENVELOPE AND BODY IN INCOMPATIBLE FORMATS
You achieve even more opaqueness when the body is of a complete-

ly distinct format from the message envelope. In that case the envelope
is completely incapable of understanding the body. 

Given two distinct formats like XML and Java objects, how do you
embed one opaquely in the other? It’s easy to embed XML in a Java
object, since XML is just a string and a String is a Java object. You achieve
full opaqueness when you set a JMS StringMessage, since the String can
contain anything, not just a well-formed XML document. Likewise, you
can send XML as a parameter in an RMI method call, which,behind the
scenes, relies on object serialization. 

Conversely, you might want to send Java objects over the wire. Java
objects provide many of the advantages of XML: self-describing data,
automatic metadata discovery (dynamic class-loading, analogous to
automatic downloading of schemas from URLs) and platform indepen-
dence. Of course, Java objects are closely tied to the Java language, cre-
ating an unwanted dependency but providing the ability to download
behavior along with data. Several serialization methods have been pro-
posed for Java and other languages through XML: SOAP, WDDX and SOX
are a few – but ordinary Java object serialization has the advantage of
being easily available in a robust implementation. You may also find Java
serialization in legacy systems. 

A Java object embedded in XML serves as an illustration of how to
achieve complete opaqueness in XML. Here the data isn’t even a mean-
ingful string, but simply a sequence of raw bytes. The techniques used to
encode a Java object can be used to opaquely encode any binary data.
While there are a number of ways of doing this, the most common is to
encode the data in Base64. This standard uses the characters from a-z, A-
Z, 0-9, + and / to represent the digits of a base 64 number, each digit
encoding 6 bits. Code for Base64 conversion is commonly available,
since Base64 is used to encode binary data in HTTP (Web) and SMTP (e-
mail) transmissions. 

Just using Base64 data doesn’t let the parser or XML application know
that the string is encoded Base64 information. By creating an additional
constraint, you indicate that Base64 is the encoding scheme used. In W3
XML Schema the base type binary with an encoding schema component
containing an attribute value=“base64” indicates that the element is of
type binary. A further refinement (with concomitant reduction of trans-
parency) is to indicate that the Base64 data is specifically a Java object.
You derive your own data type from binary, declaring that the element is
specifically a serialized Java object. If this schema is used, only serialized
Java objects should be passed as the element’s character data.

<simpleType name="serializedJavaObject" base="binary">
<encoding value="base64"/>

</simpleType>

A base-64 encoding string looks like nonsense to a human reader. A
simple Java object comes out looking quite opaque:
rO0ABXNyAAZQZXJzb27QohB9ajN37gIAAUkABG1BZ2V4cAAAACc=.
The value of this shouldn’t be underestimated, since breaking the layer
structure is an all-too-common human error. When you don’t allow
other developers access to your data format – even if it isn’t actually
encrypted – you reduce the temptation for coders of the lower layer to
read fields from the upper layer. While this shouldn’t necessarily make
you choose human-unreadable data – indeed, the XML philosophy sup-
ports human-readable data – enforcing the discipline of layer separation
should be a top priority.

The examples given ???below??? show that the lower layer often
imposes requirements on the body, breaking transparency and opaque-
ness. There is a way around this. If it’s impossible to rework the body
with the constraints imposed by the lower layer, you can always treat the
constraints as headers in yet another layer of envelope, and place the
body in that. For example, you can’t pass arbitrary XML in a SOAP body,
but you can define a SOAP method call that takes arbitrary XML as a
parameter, then pass the XML through that method.

Glossary
Body: The lower-layer information packed into the appropriate part of
the envelope structure
Constraints (on body): Requirements imposed by one layer on another
Coupling: Knowledge held by one software component about another, so
that neither can be easily changed
Envelope: The structure within the message; includes Header and Body
(see Figure 1).
Escaping: Converting characters that are significant to the data structure
on a given layer to characters that aren’t structurally significant
Header: Information in the body needed by the lower layer; brought into
the header from the body during packing
Higher layer of abstraction: Logically closer to the user
Lower layer of abstraction: Logically closer to the machine
Message: The unit of data that holds the envelope structure  (see Figure 1)
Opaqueness: Lack of information about the higher layer in the lower layer
Packing: Inserting the body and header information into the appropriate
parts of the envelope structure
Transparency: Lack of information about the lower layer in the higher layer

Header/Body: A Non-XML Example
The Header/Body pattern isn’t new to XML; it’s commonly found in

many communication protocols, of which the IP protocol stack may be
the most familiar. Here each layer, from the Application Layer down
through the Host-to-Host, Internetwork and Network Access layers,
treats data passed down to it as raw binary information, ignoring any
application-specific formatting, flow control, routing or checksum infor-
mation. A higher layer informs the lower layer of any information it
needs through APIs. For example, an application-layer HTTP client pass-
es down the server’s address through the Host-to-Host socket API, and
certainly doesn’t expect the socket to parse the HTTP text stream. Con-
versely, the lower layers inform the upper layers of needed information
through return values and interrupts. No information is exchanged
between layers though the raw byte streams. 

Each layer prepends its own header to the packet of higher-layer raw
data. This simple linear arrangement, which is the origin of the “Head-
er/Body” terminology, contrasts with the nested arrangement of XML,
which has the advantage of self-describing structure. Thus an XML mes-
sage envelope can have multiple variable-length headers and bodies,
with their borders neatly delineated by the XML tags.

Efficiency vs Encapsulation
Developers have a tendency to break both opaqueness and trans-

parency. Too often the lower-layer software reads body data, whether for
efficiency or expedience. 

The usual excuse is efficiency; efficiency and encapsulation are often
at odds. The problem has come up in implementations of the IP proto-
col stack. When lower layers were made to depend on the format of high-
er layers for the sake of efficiency or error recovery, protocol layers have
been locked together so that changes in layers have become impossible.

The same dilemma can occur in XML. Envelopes within envelopes,
each one assigned to a separate layer, can cause a tremendous overhead,
and you might be tempted to save some of the tags within tags. 

Nevertheless, the XML philosophy comes down firmly on the side of
good design. The XML 1.0 Spec includes a list of 10 design goals. After wor-
thy goals such as straightforwardness and compatibility, the end of the list
is occupied by “Terseness in XML markup is of minimal importance.” This
seems counterintuitive, but the XML philosophy consciously rejects space
efficiency. This philosophy would value encapsulation over efficiency, and
in fact encapsulation can solve the problem of efficiency. By applying com-
pression techniques that take advantage of XML’s redundancy, bulkily
wrapped XML can be compressed to net-worthy sizes. And even if a price
must be paid in unzipping and unwrapping XML envelopes, the design
benefit of multilayered Header/Body structures is considerable.  

References
1. Design Patterns: http://hillside.net/patterns/



61w w w . X M L - J O U R N A L . c o m volume1 issue5

2. Object serialization in XML:
with Web Distributed Data eXchange – www.wddx.org
with Simple Object Access Protocol– www.w3.org/TR/SOAP/
3. Defining data types with Schemas: www.w3.org/TR/xmlschema-2/
4. Java Message Service: www.javasoft.com/jms
5. Java Message Service: www.w3.org/TR/xml-infoset 
6. Base64: www.ietf.org/rfc/rfc2045.txt
7. XML Spec: www.w3.org/TR/REC-xml

<?xml version="1.0"?> 

<Message xmlns="x-schema:MessageSchema.xml">
<Header>
<!-- When this document was built, routing 
information was copied from the body to the 
header, to avoid breaking opaqueness during 
transmission -->

<TargetAddress>
joe@anywhere.com

</TargetAddress>
</Header>

<!-- This is an opaque body. It could 
include text, markup elements, or both.
Schema for item placed in the body 
should be defined separately, and available 
to sender and recipient in a 
common repository. Because it is not CDATA,
this body is not completely opaque: It will
be parsed and must be well formed and valid if
the parser requires that.-->   

<Body> 
<Order xmlns="x-schema:OrderSchema.xml">

<Target>
joe@anywhere.com

</Target>
<Item>

Garden chair
</Item>

</Order>
</Body>

<Body>
<!-- The second example of a body element of 
this messge is totally opaque. It demonstrates 
the embedding of an XML message in another 
where the body’s schema is not currently 
available. This data will be left unparsed 
(saving parsing time) until the recipient 
"unpacks" it. It does not even have to be 
well-formed or valid.-->

<![CDATA[ 
<?xml version="1.0"?> 
<Purchase xmlns="x-schema:

http://www.unavailable.com/purchaseSchema.xml">
<Price currency="USD">54.00</Price>
<SKU>209238</SKU>

</Purchase> 
]]>

</Body>
</Message>

<!--
To preserve opaqueness of body, this Schema is 
defined separately from any schema that may be 
placed in the body, such as the OrderSchema.

This example uses Microsoft's XML-Data pre-standard 
variant of Schemas, for which validators are 
currently available. Standard Schemas should be 
quite similar when the recommendation is approved 
by the W3. Some examples in the text are based on 
that proposal, since Microsoft XML-Data does not 
support derivation.

-->
<Schema xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="TargetAddress" content="textOnly"/>     

<ElementType name="Header" content="eltOnly">
<element type="TargetAddress"/>  

</ElementType >

<!-- Note that the content of the body is left
open, to allow for opaqueness. -->
<ElementType name="Body" content="mixed" model="open"/>

<ElementType name="Message" content="eltOnly">
<element  maxOccurs="1"  minOccurs="1" type="Header"/>  

<!--This schema allows for multi-part bodies 
with maxOccurs="*" -->    

<element  maxOccurs="*"  minOccurs="1" type="Body"/>
</ElementType>

</Schema>

<!-- 
To preserve transparency of messaging format
this Schema is defined separately from any schema
that may be placed in the body, such as 
the MessageSchema.
-->
<Schema xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes">
<ElementType name="Target" dt:type="string" content="tex-

tOnly"/>
<ElementType name="Item" dt:type="string" content="textOn-

ly"/>

<ElementType name="Order" content="eltOnly" model="open"
order ="seq">

<element type="Target"/>
<element type="Item"/>

</ElementType>
</Schema>

Listing 4
<!—This is a counter-example! Don’t try this yourself! The
CDATA section, as it would be incorrectly understood by a
parser, is highlighted. -->
<outerMessage>
<! [CDATA[
<intermediateMessage>
<! [CDATA[
<innermostBody/>
]]>
</ intermediateMessage >
]]>
</outerMessage>

J T F O X @ U S A . N E T

AUTHOR BIO
Joshua Fox is senior architect at Surf&Call Network Services, where he develops distributed Java 
applications. His current project is an Internet service that enables joint Web-surfing. Joshua has a BA
in mathematics from Brandeis University and a PhD in comparative Semitic philology 
from Harvard.

LISTING  1

LISTING  2

Download the
Co

d
e!

The
cod

el
ist

ing
for

thi
s a

rticl
e can also be located at

www.xm
l-jo

urn
al.

com

LISTING  3


