
Active
Information Models

for Data
Transformation

By Joshua Fox, Ph.D.

R
egardless of industry sector or organizational size,

enterprises face critical problems in data manage-

ment and operation-

al efficiency as a result of

multiple, overlapping and

distinct schemas in each

domain. Corporate mergers

often result in parallel appli-

cations that handle similar

domains. Often, departments

define their transmission

schemas separately because

of a lack of coordination or the use of different applications.

Maintaining the variety of applications and integrating

between them is a challenge. It’s difficult to track the

schemas and business entities each represents. Currently, to

integrate the applications that

use these schemas, transfor-

mation logic must be custom-

developed at great cost,

reflecting semantic and syn-

tactic differences between

schemas. Any effort to man-

age these metadata and data-

transformation assets manual-

ly is doomed to failure since

changing requirements quickly invalidate analyses and

interschema transformations.

26 eAI Journal • May 2003

R

The Problem
Enterprise data resources can take

many different forms: Relational Data-
base (RDB) tables, XML documents,
Electronic Data Interchange (EDI) mes-
sages, COBOL records and others.
Independent Software Vendor (ISV)
applications — such as Enterprise
Resource Planning (ERP), Customer
Relationship Management (CRM) soft-
ware, or home-brew software — define
their own input and output schemas.
Often, the different schemas hold simi-
lar information, though the structure of
the information may differ.

Enterprise Application Integration
(EAI) systems must overcome the prob-
lem of heterogeneous schemas. To do
this, EAI implementers must fully
understand the semantics of each
schema, since the schemas often repre-
sent the decisions of a single application
developer working from specifications
of a single step in a process. Ultimately,
new schemas multiply as requirements
change, and the investment in analyzing
requirements, as captured in older
schemas, is lost.

Today, overcoming this heterogeneity
requires significant time, with little
return. Developers must create transfor-
mation code manually, whether by cod-
ing in textual languages, such as
eXtensible Stylesheet Language Trans-
formation (XSLT), or by using graphi-
cal transformation design tools. While
this is tenable with a few schemas, a
larger number results in a skyrocketing
number of such transformations. The
number of transformations goes up as
the square of the number of schemas.

Even if applications are manually inte-
grated at great expense, the solution isn’t
maintainable. When schemas change, as
they often do in a quickly changing envi-
ronment, existing code for transforming
data from one schema to several others
becomes unusable. In the worst-case sce-
nario, when a single application’s output
or input schema changes, all code for
integrating that application must be re-
written from scratch, since XSLT code
and Structured Query Language (SQL)
queries don’t lend themselves to reuse.
Since the semantics of the original
schema frequently aren’t captured for-
mally, re-developing transformation
logic means re-analyzing schema seman-
tics. Finding the appropriate domain
expert and dedicating the time required
for this additional development cycle are

two of the obvious drawbacks.
To illustrate with a simple example

(see Figure 1), desktop computers with
their associated storage capacities may
be represented with a variety of XML
structures. Each schema conveys funda-
mentally the same information (here, a
desktop computer with 30 gigabytes of
hard-disk capacity) but the tag names
and structure differ completely. Each of
these applications must send messages
to the others on the bus. To convert from
one to the other, elements must be taken
out of the source document and arranged
in a different way in the target, with
some application of rules along the way
— such as converting the megabytes
recorded in schema 2 to the gigabytes of
schema 1. If the three applications here
are to be fully integrated, six XSLT
transformations will be required.

Although the example here is built
with XML, the same principles would
apply to other structures, such as EDI
messages, or even to disparate database
tables, transformed via SQL.

Today’s EAI Systems
Today’s hub-and-spoke messaging

bus architectures have revolutionized
application integration, addressing
some of the problems of point-to-point
heterogeneous enterprise information
systems (see Figure 2). However, they
still require point-to-point effort for
schema integration.

The transport hub-and-spoke archi-
tecture, as represented by asynchronous
messaging buses, has tremendously
simplified integration efforts. No longer
do integrators have to develop a mes-
saging link for each pair of source and
target applications; the source applica-
tion can now send a message on the bus,
while the target application simply lis-
tens to an agreed-on queue or “topic.”

The format hub-and-spoke architec-
ture deals with the wide variety of data
formats found in the enterprise, such as
comma-separated textual fields, appli-
cation-specific binary protocols, and
RDBs. A standards-based approach uses
XML as a hub format. EAI technologies
can take data from most common for-
mats and convert it to the hub format.
Nonetheless, this solution doesn’t solve
the problem of disparate schemas.
Existing tools can convert all messages
to XML, but the schemas may differ.
Similar information may be carried in
different elements or attributes, as in our
example (Figure 1).

EAI vendors include message broker
components (also known as “integra-
tors”) that can transform data from one
schema to another, once transformation
logic is deployed. These message bro-
kers sit as a peer application on the bus.
Each source application sends messages
to a messaging-bus address for the mes-
sage broker. The message broker re-
ceives the message and, depending on

eAI Journal • May 2003 27

…
<desktop_computer>
 <harddrive>
 <partition drive="c:"
 capacity="10"

 unit="GB"/>
 <partition drive="d:"
 capacity="20"

 unit="GB"/>
 </harddrive>
</desktop_computer>
…

...
<computer>
 <harddisk>
 <capacity>30
 </capacity>
 </harddisk>
</computer>
...

...
<unit type=”desktop”>
 <storage>
 30000
 </storage>
</unit>
...

 Schema 1 Schema 2

Schema 3

Figure 1 — Transformed Documents (Sample Fragments)

Integration Layer Hub
Transport EAI Bus
Format XML
Schema Central Information Model

Figure 2 — Hub-and-Spoke on Architectural Layers

28 eAI Journal • May 2003

workflow rules, transforms the message
into a schema suitable for a target appli-
cation, then re-sends the output to the
target. These message-broker transfor-
mation engines are an essential part of
modern EAI systems.

However, the message brokers still
require the transformation logic to be
developed manually. Thus, a schema hub-
and-spoke architecture is still needed to
avoid the design-time effort of applica-
tion-to-application transformation.

Transformation Development
Techniques

Enterprises today have various
approaches to the problem of multiple
incompatible schemas. The typical solu-
tion is to hand-code distributed services
that transform one schema to another,
using a general-purpose language, such
as Java, or a transformation-specific lan-
guage, such as XSLT or IBM’s ESQL.

Another approach is to develop trans-
formation logic using graphical develop-
ment tools, often bundled with EAI mes-
sage broker products. Although these
tools simplify the development of any
given transformation, the user must still
manually create transformation logic for
a given source schema and target
schema. This includes analyzing the
schema requirements, designing the
transformations and building them. The
effort required still goes up rapidly as
the number of schemas increases, and
it’s still impossible to maintain the trans-
formation logic, given application re-
quirements. This is parallel to the well-
known problem with application-to-
application transport connections that
was solved by messaging buses: an inte-
gration effort that increases rapidly as
the enterprise’s needs inevitably grow.

The Unifying Information
Model

The semantic hub is at the heart of a
new enterprise data integration architec-
ture in which a central information
model dynamically generates data trans-
formations between and among schemas,
obviating the need to develop schema-to-
schema transformation code for any pair
of schemas.

This new generation of software cre-
ates a new hub-and-spoke system for
schemas, naturally extending the bene-
fits of the hub-and-spoke system for
transport and for format found in
today’s EAI systems. This semantic hub

automatically generates all the needed
transformation code.

The semantic hub is centered on a
rich, central, active information model.
This information model is based on
ontology, a modeling technique that has
been under development in academia
for decades. In recent years, Tim Ber-
ners-Lee, inventor of the World Wide
Web, has put forward his vision of the
Semantic Web, the next stage of infor-
mation sharing, this time between appli-
cations. Ontology is at the core of the
Semantic Web. The World Wide Web
Consortium (W3C), which has created
standards for the Web and for XML, is
now finalizing a standard approach to
ontology as part of its Web Ontology
Working Group, guaranteeing wide-
spread standardization for semantic sys-
tems. The semantic hub, as used in EAI
systems, is an application of Semantic
Web concepts to particular enterprise
needs, which include robustness, main-
tainability and scalability.

Older modeling techniques have some
superficial resemblance to the ontological
method. Ontology resembles the Entity
Relationship (ER) model in the linking
between classes/entities by means of
properties/relationships. It resembles
Object-Oriented (OO) design in the use
of inheritance as a powerful class-build-
ing principle. However, ER is primarily
intended for modeling RDBs, while OO
is aimed at software design. Ontology, on
the other hand, models enterprise seman-
tics, rationalizing schemas written in var-
ious languages, including XML Docu-
ment Type Definitions (DTDs) or
schemas, COBOL copybooks, RDB data
dictionaries and others.

Rich Information Model
This information model is rich in that

it describes real-world business entities,
using techniques such as inheritance
and interclass links to indicate special-
izations among entity types. It includes
rules that show the relationships
between entities. The model presents a
coherent view of the complex web of

meaning, relating entities in the enter-
prise. It uses vocabulary from the busi-
ness domain rather than the cryptic
identifiers found in code.

Besides code generation, the rich
information model maximizes the value
of schemas by serving as a central
semantic repository for enterprise
schemas. Centralizing and clarifying the
semantics of a schema in a unified,
coherent way, the information model lets
managers catalog and assess their meta-
data assets. Legacy schemas are often
difficult to understand, maintain, and
modify. When schemas are rationalized
to the central information model, which
uses intuitive terminology rather than
the cryptic identifiers of schema lan-
guages, the meaning of the schemas and
their subelements is clearly indicated.

The active information model main-
tains full synchronization with enter-
prise schemas. Mapping each new
schema into the model immediately
relates it semantically to every other
schema. When changes are needed, the
user can introduce mappings of the new
schemas, or the information model can
actually generate new schemas.

Central Information Model
The information model is central in

that it represents a neutral semantic view
of the enterprise, not related to any one
schema. This model is linked to metada-
ta, such as XML schemas, Java Appli-
cation Program Interfaces (APIs),
COBOL copybooks, and RDB data dic-
tionaries. This is in contrast to other
types of models, such as Entity-Relation-
al (E-R) diagrams or Unified Modeling
Language (UML), which are related only
to the databases or software that they
served to design; E-R and UML models
are often created during development
and then filed away. A central informa-
tion model gives coherence to the enter-
prise view, providing a live picture of the
current state of the wide variety of enter-
prise data resources. Each of the
resources is rationalized through map-
ping to the central model.

The information model is central
in that it represents a neutral semantic

view of the enterprise.

eAI Journal • May 2003 29

Active Information Model
The information model is active in

that it can generate transformation code
to transform from any one schema to any
other, logically unifying all schemas.
This is essential in application integra-
tion, since when two applications must
communicate, the output of one differs
in its structure from the expected input
of the other. The semantic software can
generate the transformation logic, seam-
lessly integrating the two applications
without further intervention.

Creation of this rich, central, active
model gives IT managers new power. It
converts data, comprehensible only to
the applications that read and write it,
into information that includes a seman-
tic description that lets all enterprise
applications use it.

Data Integration Project
Methodology

The development process for creating
transformations through an active infor-
mation model differs from the process
for developing them manually. By focus-
ing on schema rationalization to a cen-
tral information model, the investment
in developer time isn’t lost with creating
each new transformation. Rather, a sin-
gle per-schema effort translates into a
rich, central model that rationalizes and
clarifies enterprise data. Transforma-
tions can then be produced with no addi-
tional developer effort.

This structured process, centered on
the information model, minimizes
human errors, facilitates application
integration, and reduces lag time in
responding to changing needs. As shown
in Figure 3, process stages include:

• Business analysis
• Creating an information model
• Rationalization of the schemas through

mapping to the model
• Automated generation of transforma-

tions
• Deployment.

Business Analysis
Developing transformations with a

semantic hub begins when domain ana-
lysts examine data schemas. The ana-
lysts determine the semantic value of
the schema elements — the real-world
entities they represent — and the rules
governing schemas. In our example,
analysts determine the computer types
being sold, the computer properties

most relevant to the manufacturing and
sales process, the units of measurement
for these properties, and the rules relat-
ing to the properties. For example, com-
puters are one of the products being
manufactured, drives can be divided
into partitions, and so on.

Central Information Model
The second stage is developing a cen-

tral information model that encodes the
semantic information in the schemas.
Figure 4 shows a small part of a central
information model for our computer-

manufacturing example. The class,
ElectronicDevice, is among those that
inherit directly from the universal base
class, Being. Computer and HardDisk
are specializations (subclasses) of
ElectronicDevice; HardDisk is also a
subclass of Storage.

Examining the class Computer, each
computer has a RandomAccessStorage
device of type HardDisk. HardDisk has
the property partitions, showing that the
disk has multiple partitions. The infor-
mation model also has rules; for exam-
ple, a rule indicating that the capacity in

Figure 4 — (Partial) Information Model

The information model is active
in that it can generate transformation code to
transform from any one schema to any other.

Business
Analysis

Information
Model

Rationalization

Auto-generate
Transformation

Deploy
Transformation

Figure 3 — Project Methodology

30 eAI Journal • May 2003

megabytes equals the capacity in giga-
bytes multiplied by 1,000.

Rationalizing Schemas
The third stage is rationalizing the

schemas by mapping them to the ontol-
ogy. Here, each complex (structured)
element of the schemas is mapped to a
class, while each simple (atomic) ele-
ment is mapped to a class property.

The structured elements representing
a desktop computer in the three schemas
are mapped to class DesktopComputer;
the simple elements indicating capacity
in megabytes are mapped to the proper-
ty, CapacityInMB.

The advantage of the semantic hub
becomes clear. The schema-to-schema
approach requires developing transfor-
mation code for each pair of schemas,
while the semantic hub approach
requires each schema to be mapped only
once to the central information model.

Auto-Generating Transformation Code
The fourth stage is the automated

generation of transformation code. The
semantic hub software searches for
shared semantics of the source and tar-
get schemas, where both source and tar-

get are mapped to the same concepts in
the model. More advanced semantic
hubs can transform schemas even if
they’re not mapped to the same con-
cepts in the model, by applying rules
encoded in the semantic hub.

The semantic hub encodes the fact that
different elements are mapped to the same
class: computer, unit, and desktop comput-
er elements are all mapped to the Desktop
class. When converting XML from one
schema to another, the respective subdocu-
ments are transferred to the new tag
names. Likewise, the multiple elements
called partition in schema 3 are trans-
formed into a single harddisk element in
schema 1. The semantic hub further gener-
ates the code needed to convert megabytes
into gigabytes under the encoded rule.

The generated code can be in various
languages: for XML, as used in EAI
messaging systems, XSLT is used.
When the goal is to directly transform
between RDBs, the code is SQL that
SELECTs data from the source RDB,
then INSERTs the transformed data into
the target.

Auto-generated code gives the addi-
tional advantage of easing maintenance.
As needs change, a simple update to the

active information model supports new
code generation.

Deployment
The final stage is deployment. Just like

manually developed schema-to-schema
transformations, the auto-generated trans-
formations can be deployed into the mes-
sage broker component of an EAI system,
then executed in the message broker’s
transformation engine (see Figure 5).

Conclusion
Enterprises are faced with too much

data, too many data schemas, and not
enough information. Semantics —
meaning — is what turns data into
information, but often, the semantics
are expressed only implicitly in applica-
tion code, so application data inter-
change requires human input.

Enterprises are now undergoing a
slow evolution from managing data to
managing information. For data to go
beyond the silo walls of a single applica-
tion to full cross-application sharing in a
smooth, automatic manner, semantics
must be formally expressed, then linked
to the data. A rich information model
makes data comprehensible to external
applications designed to read it. EAI
systems are providing a central hub for
message transport, eliminating the need
for custom transport code for each appli-
cation. Up to now, however, EAI hub-
and-spoke messaging has required a
spaghetti of point-to-point analysis and
mapping. The central information model
works with EAI systems to provide
coherence for data semantics, allowing
data to become information.

The author acknowledges Joram Boren-
stein for his assistance with this article.

Joshua Fox, Ph.D.,
is a software architect
at Unicorn Solutions,
working on the Uni-
corn Coherence plat-
form for unification
of information in the
enterprise. Unicorn

is a member of the W3C Web Ontology
Working Group, which is standardizing ontol-
ogy languages for the Web. His previous expe-
rience includes the design and development of
large-scale distributed Internet systems.Voice:
866-286-4267, x115; e-Mail: joshua@uni-
corn.com; Website: www.unicorn.com.

About the Author

 _ _

Schema 1 Schema 2 Schema 3 …

 Transformation code
_ _

EAI Message Broker

analysis

rationalization

generation

deployment

Central
Information

Model

Central
Information

Model

Figure 5 — Overview of Development Process

